Physical Distancing Detection System using OpenCV Based on Raspberry Pi4

Mohammad Rafiqul Farzan

Abstract


The Covid-19 pandemic is a disease that is ravaging all over the world, one of which is in our country, namely Indonesia. At this time, officers are still monitoring physical distancing by giving direct warnings to physical distancing violators. Monitoring system that aims to detect physical distancing violations using detection based on biometric identification using faces. The monitoring system uses a Mixio F10 webcam with 1080p resolution which is processed with a Raspberry Pi 4 microcomputer with specifications of 4 GB RAM and an SD Card to store the Raspbian operating system. The distance detection program between faces uses the Python programming language and requires the Open CV library. USB Speaker as an output medium in the form of sound as a warning against physical distancing violators. The tool detects the distance between adjacent faces equipped with a voice indicator if the distance between faces exceeds a predetermined distance with a maximum distance of 3 meters and the level of accuracy of face detection depends on the distance of the face to the camera.


Keywords


Covid-19; Physical distancing; Raspberry Pi 4; USB Speaker; Webcam Mixio F10

Full Text:

PDF

References


Juaningsih, I. N., Consuello, Y., Tarmidzi, A., dan NurIrfan, D. (2020). Optimalisasi kebijakan pemerintah dalam penanganan COVID-19 terhadap masyarakat Indonesia. SALAM: Jurnal Sosial dan Budaya Syar-i, 7(6), 509-518.

Choi, C. H., Kim, J., Hyun, J., Kim, Y., and Moon, B. (2022). Face detection using haar cascade classifiers based on vertical component calibration. Human-centric Computing and Information Sciences, 12(11), 1-17.

Minu, M. S., Arun, K., Tiwari, A., and Rampuria, P. (2020). Face recognition system based on haar cascade classifier. International Journal of Advanced Science and Technology, 29(5), 3799-3805.

Paramitha, I. A. P. I., Djuni, I. D., dan Setiawan, W. (2020). Rancang bangun prototipe sistem pendeteksi asap rokok berbasis mikrokontroler menggunakan sensor MQ-2 dilengkapi dengan exhaust fan. Jurnal SPEKTRUM, 7(3), 69-75.

Syafruddin, R., Ramady, G. D., dan Hudaya, R. R. (2021). Rancang bangun sistem proteksi daya listrik menggunakan sensor arus dan tegangan berbasis arduino. Jurnal Online Sekolah Tinggi Teknologi Mandala, 16(1), 36-43.

Zanofa, A. P., Arrahman, R., Bakri, M., dan Budiman, A. (2020). Pintu gerbang otomatis berbasis mikrokontroler arduino uno r3. Jurnal Teknik dan Sistem Komputer, 1(1), 22-27.

Khalifa, A. F., Badr, E., and Elmahdy, H. N. (2019). A survey on human detection surveillance systems for raspberry pi. Image and Vision Computing, 85(1), 1-13.

Sari, I. P., Al-Khowarizmi, A. K., dan Batubara, I. H. (2021). Analisa sistem kendali pemanfaatan raspberry pi sebagai server web untuk pengontrol arus listrik jarak jauh. InfoTekJar: Jurnal Nasional Informatika dan Teknologi Jaringan, 6(1), 99-103.

Chellappa, A., Reddy, M. S., Ezhilarasie, R. R., S. Suguna S. K., and Umamakeswari, A. (2018). Fatigue detection using raspberry pi 3. International Journal of Engineering and Technology, 7(2), 29-32.

Efendi, Y. (2018). Internet of things (IoT) sistem pengendalian lampu menggunakan raspberry pi berbasis mobile. Jurnal Ilmiah Ilmu Komputer Fakultas Ilmu Komputer Universitas Al Asyariah Mandar, 4(2), 21-27.

Ristyawan, E. F., Yuniarno, E. M., dan Kurniawan, A. (2018). Digital signage berbasis raspberry pi 3. Jurnal Teknik ITS, 7(1), A171-A174.

Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., Elhoseny, M., and Baik, S. W. (2020). Raspberry pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Generation Computer Systems, 108(1), 995-1007.

Pasumarti, P., and Sekhar, P. P. (2018). Classroom attendance using face detection and raspberry pi. International Research Journal of Engineering and Technology (IRJET), 5(3), 167-171.

Aiyub, F. F., and Munawir, M. (2019). Kontrol mouse menggunakan webcam berdasarkan deteksi warna. JTIM: Jurnal Teknologi Informasi dan Multimedia, 1(1), 73-77.

A. Zein., (2018). Pendeteksian kantuk secara real time menggunakan pustaka openCV dan DLIB python, Jurnal Penelitian dan Pengkajian Sains dan Teknologi, 28(2), 22-26.

Juneja, A., Juneja, S., Soneja, A., and Jain, S. (2021). Real time object detection using CNN based single shot detector model. Journal of Information Technology Management, 13(1), 62-80.

Zulkhaidi, T. C. A. S., Maria, A., dan Yulianto, Y. (2019). Pengenalan pola bentuk wajah dengan openCV, Teknologi Rekayasa Perangkat Lunak, 3(2), 181-186.

Ismael, K. D., and Irina, S. (2020). Face recognition using viola-jones depending on python. Indonesian Journal of Electrical Engineering and Computer Science, 20(3), 1513-1521.

Lazaro, J. L. A., Buliali, dan Amaliah. B. (2017). Deteksi jenis kendaraan di jalan menggunakan openCV, Jurnal Teknik ITS, 6(2), 293-299.

Wajdi, M. F., dan Sugiantara, J. (2018). Pemanfaatan teknik pengenalan wajah berbasis openCV untuk sistem informasi pencatatan kehadiran dosen. Infotek: Jurnal Informatika dan Teknologi, 1(2), 96-106.

Dhawle, T., Ukey, U., and Choudante, R. (2020). Face detection and recognition using openCV and python. International Research Journal of Engineering and Technology (IRJET), 7(10), 1269-1271.

Hasan, R. T., and Sallow, A. B. (2021). Face detection and recognition using openCV. Journal of Soft Computing and Data Mining, 2(2), 86-97.




DOI: https://doi.org/10.17509/coelite.v1i2.59702

Refbacks

  • There are currently no refbacks.


Journal of Computer Engineering, Electronics and Information Technology (COELITE)


is published by UNIVERSITAS PENDIDIKAN INDONESIA (UPI),
and managed by Department of Computer Enginering.
Jl. Dr. Setiabudi No.229, Kota Bandung, Indonesia - 40154
email: coelite@upi.edu
e-ISSN: 2829-4149
p-ISSN: 2829-4157