Comparison of Machine Learning and Deep Learning Algorithms for Classification of Breast Cancer
Abstract
Keywords
Full Text:
PDFReferences
Cahyanti, D., Rahmayani, A., dan Husniar, S. A. (2020). Analisis performa metode KNN pada dataset pasien pengidap kanker payudara. Indonesian Journal of Data and Science, 1(2), 39-43.
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249.
Ma’arif, F., dan Arifin, T. (2017). Optimasi fitur menggunakan backward elimination dan algoritma SVM untuk klasifikasi kanker payudara. Jurnal Informatika, 4(1), 46-53.
Mattiuzzi, C., and Lippi, G. (2019). Current cancer epidemiology. Journal of Epidemiology and Global Health, 9(4), 217-222.
Ikotun, A. M., Almutari, M. S., and Ezugwu, A. E. (2021). K-means-based nature-inspired metaheuristic algorithms for automatic data clustering problems: recent advances and future directions. Applied Sciences, 11(23), 1-61.
Sartika, D., dan Indra, D. (2017). Perbandingan algoritma klasifikasi naive bayes, nearest neighbour, dan decision tree pada studi kasus pengambilan keputusan pemilihan pola pakaian. Jurnal Teknik Informatika dan Sistem Informasi, 1(2), 151–161.
Pangaribuan, J. J., Tanjaya, H., dan Kenichi, K. (2021). Mendeteksi penyakit jantung menggunakan machine learning dengan algoritma logistic regression. Journal Information System Development (ISD), 6(2), 1-10.
Higa, A. (2018). Diagnosis of breast cancer using decision tree and artificial neural network algorithms. International Journal of Computer Applications Technology and Research, 7(1), 23–27.
Rane, N., Sunny, J., Kanade, R., and Devi, S. (2020). Breast cancer classification and prediction using machine learning. International Journal of Engineering Research and Technology, 9(2), 576-580.
Wang, Q. Q., S. C. Yu, Xiao Qi, Y. H. Hu, W. J. Zheng, J. X. Shi, and H. Y. Yao. (2019). Overview of logistic regression model analysis and application. Chinese Journal of Preventive Medicine, 53(9), 955-960.
Silva, J. C. F., Teixeira, R. M., Silva, F. F., Brommonschenkel, S. H., and Fontes, E. P. (2019). Machine learning approaches and their current application in plant molecular biology: a systematic review. Plant Science, 284(1), 37-47.
Senaviratna, N. A. M. R., and A Cooray, T. M. J. (2019). Diagnosing multicollinearity of logistic regression model. Asian Journal of Probability and Statistics, 5(2), 1-9.
Saadatfar, H., Khosravi, S., Joloudari, J. H., Mosavi, A., and Shamshirband, S. (2020). A new K-nearest neighbors classifier for big data based on efficient data pruning. Mathematics, 8(2), 1-12.
Alfeilat, H. A. A., Hassanat, A. B., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., Salman, H. S. E., and Prasath, V. S. (2019). Effects of distance measure choice on k-nearest neighbor classifier performance: a review. Big Data, 7(4), 221-248.
Charbuty, B., and Abdulazeez, A. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2(01), 20-28.
Cichy, R. M., and Kaiser, D. (2019). Deep neural networks as scientific models. Trends in Cognitive Sciences, 23(4), 305-317.
Montavon, G., Samek, W., and Müller, K. R. (2018). Methods for interpreting and understanding deep neural networks. Digital Signal Processing, 73(1), 1-15.
Patra, T. K., Meenakshisundaram, V., Hung, J. H., and Simmons, D. S. (2017). Neural-network-biased genetic algorithms for materials design: evolutionary algorithms that learn. ACS Combinatorial Science, 19(2), 96-107.
Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications, 80(1), 8091-8126.
Purwa, T. (2019). Perbandingan metode regresi logistik dan random forest untuk klasifikasi data imbalanced (studi kasus: klasifikasi rumah tangga miskin di kabupaten Karangasem, Bali tahun 2017). Jurnal Matematika, Statistika dan Komputasi, 16(1), 58-73.
DOI: https://doi.org/10.17509/coelite.v2i2.59717
Refbacks
- There are currently no refbacks.
Journal of Computer Engineering, Electronics and Information Technology (COELITE)
is published by UNIVERSITAS PENDIDIKAN INDONESIA (UPI),
and managed by Department of Computer Enginering.
Jl. Dr. Setiabudi No.229, Kota Bandung, Indonesia - 40154
email: coelite@upi.edu
e-ISSN: 2829-4149
p-ISSN: 2829-4157