Forecasting Survival Rates Post-Gastrointestinal Surgery: Integrating The New Japanese Association of Acute Medicine (JAAM Score) and Neural Network Classification
Abstract
Keywords
Full Text:
PDFReferences
Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L., and Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 315(8), 801–810.
Zeerleder, S., Hack, C. E., and Wuillemin, W. A. (2005). Disseminated intravascular coagulation in sepsis. Chest, 128(4), 2864–2875.
Akahoshi, T., Sugimori, H., Kaku, N., Tokuda, K., Nagata, T., Noda, E., Morita, M., Hashizume, M., and Maehara, Y. (2015). Comparison of recombinant human thrombomodulin and gabexate mesylate for treatment of disseminated intravascular coagulation (DIC) with sepsis following emergent gastrointestinal surgery: a retrospective study. European Journal of Trauma and Emergency Surgery : Official Publication of the European Trauma Society, 41(5), 531–538.
Iba, T., Arakawa, M., Levy, J. H., Yamakawa, K., Koami, H., Hifumi, T., and Sato, K. (2018). Sepsis-induced coagulopathy and Japanese association for acute medicine DIC in coagulopathic patients with decreased antithrombin and treated by antithrombin. Clinical and Applied Thrombosis/Hemostasis, 24(7), 1020-1026.
Wada, H., Matsumoto, T., Suzuki, K., Imai, H., Katayama, N., Iba, T., and Matsumoto, M. (2018). Differences and similarities between disseminated intravascular coagulation and thrombotic microangiopathy. Thrombosis journal, 16, 1-7.
Singh, R. K., Baronia, A. K., Sahoo, J. N., Sharma, S., Naval, R., Pandey, C. M., Poddar, B., Azim, A., and Gurjar, M. (2012). Prospective comparison of new Japanese Association for Acute Medicine (JAAM) DIC and International Society of Thrombosis and Hemostasis (ISTH) DIC score in critically ill septic patients. Thrombosis Research, 129(4), e119–e125.
Saito, S., Uchino, S., Hayakawa, M., Yamakawa, K., Kudo, D., Iizuka, Y., Sanui, M., Takimoto, K., Mayumi, T. and Sasabuchi, Y., (2019). Epidemiology of disseminated intravascular coagulation in sepsis and validation of scoring systems. Journal of Critical Care, 50, 23-30.
Iba, T., Di Nisio, M., Thachil, J., Wada, H., Asakura, H., Sato, K., ... and Saitoh, D. (2016). Revision of the Japanese Association for Acute Medicine (JAAM) disseminated intravascular coagulation (DIC) diagnostic criteria using antithrombin activity. Critical Care, 20(1), 1-6.
Ghafouri-Fard, S., Mohammad-Rahimi, H., Motie, P., Minabi, M. A., Taheri, M., and Nateghinia, S. (2021). Application of machine learning in the prediction of COVID-19 daily new cases: A scoping review. Heliyon, 7(10), e08143.
Sawamura, A., Hayakawa, M., Gando, S., Kubota, N., Sugano, M., Wada, T., and Katabami, K. I. (2009). Application of the Japanese Association for Acute Medicine disseminated intravascular coagulation diagnostic criteria for patients at an early phase of trauma. Thrombosis research, 124(6), 706-710.
Iba, T., Umemura, Y., Watanabe, E., Wada, T., Hayashida, K., Kushimoto, S., and Japanese Surviving Sepsis Campaign Guideline Working Group for disseminated intravascular coagulation. (2019). Diagnosis of sepsis‐induced disseminated intravascular coagulation and coagulopathy. Acute Medicine and Surgery, 6(3), 223-232.
Das, K., and Behera, R. N. (2017). A survey on machine learning: concept, algorithms and applications. International Journal of Innovative Research in Computer and Communication Engineering, 5(2), 1301-1309.
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Computer Science, 2(3), 160.
Witten, I. H., and Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Record, 31(1), 76-77.
Kaur, K., and Dhiman, S. (2016). Review of data mining with Weka tool. International Journal of Computer Sciences and Engineering, 4(8), 41-44.
Domínguez-Olmedo, J. L., Gragera-Martínez, Á., Mata, J., and Pachón Álvarez, V. (2021). Machine learning applied to clinical laboratory data in Spain for COVID-19 outcome prediction: model development and validation. Journal of Medical Internet Research, 23(4), e26211.
Chang, W., Liu, Y., Xiao, Y., Yuan, X., Xu, X., Zhang, S., and Zhou, S. (2019). A machine-learning-based prediction method for hypertension outcomes based on medical data. Diagnostics, 9(4), 178.
Jin, K. H., McCann, M. T., Froustey, E., and Unser, M. (2017). Deep convolutional neural network for inverse problems in imaging. IEEE Transactions on Image Processing, 26(9), 4509-4522.
Abdou, M. A. (2022). Literature review: efficient deep neural networks techniques for medical image analysis. Neural Computing and Applications, 34(8), 5791-5812.
Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. Neural Computation, 29(9), 2352-2449
DOI: https://doi.org/10.17509/coelite.v3i1.68500
Refbacks
- There are currently no refbacks.
Journal of Computer Engineering, Electronics and Information Technology (COELITE)
is published by UNIVERSITAS PENDIDIKAN INDONESIA (UPI),
and managed by Department of Computer Enginering.
Jl. Dr. Setiabudi No.229, Kota Bandung, Indonesia - 40154
email: coelite@upi.edu
e-ISSN: 2829-4149
p-ISSN: 2829-4157