Multiscale Geographically Weighted Regression (MGWR) untuk Memodelkan Nilai Angka Buta Huruf di Provinsi Sumatera Selatan Tahun 2021

Rizky Ardhani, Nar Herrhyanto, Fitriani Agustina

Abstract


Regression methods that take into account spatial aspects are often influenced by the geographical conditions of each observation location. In this study, a regression model was constructed to predict the relationship between the value of the illiteracy rate and several independent variables using Multiscale Geographically Weighted Regression (MGWR) in South Sumatra province. These independent variables are the population (X1), the pure elementary school participation rate (X2), the pure junior high school participation rate (X3), the number of elementary school teaching staff (X4), the number of junior high school teaching staff (X5), and the percentage of poor people (X6).  MGWR was chosen because of the use of bandwidth in each variable, so it is expected to provide a model accuracy that is thought to be more accurate to the data. One of the ABH models found in Palembang City is Y= -0.0187+0.55X1-0.1748X2 - 0.0062X3 - 1.6129X4 + 0.5394X6.

Keywords: Bandwidth, GWR, Illiteracy Rate, MGWR, Spatial Heterogenity.

 

Abstrak

Metode regresi dengan memperhatikan aspek spasial sering kali dipengaruhi oleh kondisi geografis dari masing-masing lokasi pengamatan. Pada penelitian ini dikontruksi model regresi untuk memprediksi hubungan nilai Angka Buta Huruf (ABH) dengan beberapa variabel bebas menggunakan Multiscale Geographically Weighted Regression (MGWR) di provinsi Sumatera Selatan. Variabel-variabel bebas yang dimaksud adalah jumlah penduduk (X1), angka partisipasi murni SD (X2), angka partisipasi murni SMP (X3), banyak tenaga pendidik SD (X4), banyak tenaga pendidik SMP (X5) , dan persentase penduduk miskin (X6).  MGWR dipilih karena memungkinkan penggunaan bandwidth pada setiap variabel, sehingga diharapkan mampu memberikan suatu ketepatan model yang diduga lebih akurat terhadap suatu data. Salah satu model ABH yang terdapat di Kota Palembang adalah Y= -0.0187+0.55X1-0.1748X2 - 0.0062X3 - 1.6129X4 + 0.5394X6.



Keywords


Angka Buta Huruf, Bandwidth, GWR, Heterogenitas Spasial, MGWR.

Full Text:

PDF

References


Astuti, N. K., Purhadi, P., & Andari, S. (2017). Pemodelan angka buta huruf di kabupaten/kota se-Jawa Timur dengan metode geographically weighted t regression. Jurnal Sains dan Seni ITS, 6(2).

Brunsdon, C., Fotheringham, S., & Charlton, M. (1998). Geographically weighted regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3), 431–443.

Destyanugraha, R., & Kurniawan, R. (2017). Pemodelan angka kematian ibu di Indonesia dengan pendekatan geographically weighted poisson regression. Jurnal Matematika Sains dan Teknologi, 18(2), 76–94.

Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale geographically weighted regression. Annals of the American Association of Geographers, 107(6), 1247–1265.

Griffith, D. A. (2008). Spatial-filtering-based contributions to a critique of geographically weighted regression. Environment and Planning A: Economy and Space, 40(11), 2751–2769.

Iyanda, A. E., Adeleke, R., Lu, Y., Osayomi, T., Adaralegbe, A., Lasode, M., Chima-Adaralegbe, N. J., & Osundina, A. M. (2020). A retrospective cross-national examination of COVID-19 outbreak in 175 countries: a multiscale geographically weighted regression analysis. Journal of Infection and Public Health, 13(10), 1438–1445.

Jiang, B. (2015). Geospatial analysis requires a different way of thinking: the problem of spatial heterogeneity. GeoJournal, 80(1), 1–13.

Khoeriyah, R. Y., & Hajarisman, N. (2021). Regresi terboboti geografis semiparametrik (RTG-S) untuk pemodelan indeks pembangunan kesehatan masyarakat kabupaten/kota di Sumatera Utara. Jurnal Riset Statistika, 1(1), 43–50.

Maharani, R., & Setya, W. W. (2016). Pemodelan angka buta huruf di Provinsi Sumatera Barat Tahun 2014 dengan geographically weighted regression. Jurnal Sains dan Seni ITS, 5(2), 361–366.

Mansour, S., Al Kindi, A., Al-Said, A., Al-Said, A., & Atkinson, P. (2021). Sociodemographic determinants of COVID-19 incidence rates in Oman: Geospatial modelling using multiscale geographically weighted regression (MGWR). Sustainable Cities and Society, 65, 102627.

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). MGWR: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269-300.

Portet, S. (2020). A primer on model selection using the Akaike information criterion. Infectious Disease Modelling, 5, 111–128.

Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196.

Yang, M.-S., & Tsai, H.-S. (2008). A Gaussian kernel-based fuzzy c-means algorithm with a spatial bias correction. Pattern Recognition Letters, 29(12), 1713–1725.




DOI: https://doi.org/10.17509/jem.v11i2.63140

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Mathematics Program Study, Universitas Pendidikan Indonesia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Google Scholar Logo PNG vector in SVG, PDF, AI, CDR format