Nilai Minimal Span Pelabelan L(3,1) pada Graf Supercycle Sc(n,r)
Abstract
An labeling of a graph is a function f from the set of vertex V(G) to the set of positive integers for any two vertices u, v where label difference |f(u)-f(v)|≥3 for distance d(u,v)=1 and label difference |f(u)-f(v)|≥1 for distance d(u,v)=2. In this study, the smallest positive integer λ where the maximum label used on L(3,1)-labeling for supercycle graph Sc(n,r) was formulated. The supercycle graph Sc(n,r) is the result of combining two special graphs, namely cycle graph Cn and Hanoi graph Hr. To determine the formula for the minimum span value of labeling on supercycle graph, a pattern detection method is used, which is labeling several supercycle graph with certain n and r values, then we generalized. We obtained that λ(Sc(n,1))=6 if n= 1. Furthermore, λ(Sc(n,1))=7 if n>1 and even; λ(Sc(n,1))=8 if n>1 and odd. In addition, λ(Sc(n,r))=8, for r>1.
Keywords: L(3,1)-Labeling, Supercycle Graphs.
Abstrak
Pelabelan L(3,1) didefinisikan sebagai pemetaan dari himpunan titik pada graf G ke himpunan bilangan bulat positif dimana untuk setiap dua titik u,v jika d(u,v)=1 berlaku |f(u)-f(v)|≥3 dan jika d(u,v)=2 berlaku |f(u)-f(v)|≥1. Pada penelitian ini dirumuskan nilai minimal rentang (span) pelabelan L(3,1) untuk graf supercycle Sc(n,r), yang dinotasikan dengan λ(Sc(n,r)). Graf supercycle Sc(n,r) merupakan hasil dari penggabungan dua buah graf khusus, yaitu graf cycle Cn dan graf Hanoi Hr. Proses penentuan nilai minimal span dari pelabelan L(3,1) pada graf supercycle, digunakan metode pendeteksian pola, yaitu dilakukan pelabelan pada beberapa graf supercycle Sc(n,r) dengan nilai n dan r tertentu, kemudian digeneralisasi secara induksi. Hasil penelitian ini diperoleh nilai λ(Sc(n,1))=6, jika n=1. Kemudian, λ(Sc(n,1))=7, jika n>1 dan n genap, λ(Sc(n,1))=8, jika n>1 dan n ganjil. Selanjutnya, λ(Sc(n,r))=8 untuk r>1.
Keywords
Full Text:
PDFReferences
Amri, Z., & Hadi, R. (2020). Pembentukan graf berdasarkan benda langit (bintang) dengan selisih nilai magnitude tertentu di OIF UMSU. Al-Marshad: Jurnal Astronomi Islam dan Ilmu-Ilmu Berkaitan, 6(1), 24-33.
Calamoneri, T. (2011). The L (h, k)-labelling problem: an updated survey and annotated bibliography. The Computer Journal, 54(8), 1344-1371.
Calamoneri, T., & Petreschi, R. (2004). L (h, 1)-labeling subclasses of planar graphs. Journal of Parallel and Distributed Computing, 64(3), 414-426.
Campbell, W. M., Dagli, C. K., & Weinstein, C. J. (2013). Social network analysis with content and graphs. Lincoln Laboratory Journal, 20(1), 61-81.
Chia, M. L., Kuo, D., Liao, H. Y., Yang, C. H., & Yeh, R. K. (2011). L(3,2,1)-labeling of graphs. Taiwanese Journal of Mathematics, 15(6), 2439-2457.
Ghosh, S., & Pal, A. (2016). L(3,1)-labeling of some simple graphs. Advanced Modeling and Optimization, 18(2), 243-248.
Gravier, S., Klavžar, S., & Mollard, M. (2005). Codes and L(2,1)-labelings in sierpiński graphs. Taiwanese Journal of Mathematics, 9(4) 671-681.
Griggs, J. R., & Yeh, R. K. (1992). Labelling graphs with a condition at distance 2. SIAM Journal on Discrete Mathematics, 5(4), 586-595.
Hanawa, Y., Higashikawa, Y., Kamiyama, N., Katoh, N., & Takizawa, A. (2018). The mixed evacuation problem. Journal of Combinatorial Optimization, 36, 1299-1314.
Havet, F., Klazar, M., Kratochvíl, J., Kratsch, D., & Liedloff, M. (2011). Exact algorithms for L (2, 1)-labeling of graphs. Algorithmica, 59, 169-194.
Mahmudah, M. (2022). Aplikasi pewarnaan graf terhadap penyimpanan bahan kimia. Jurnal Educazione: Jurnal Pendidikan, Pembelajaran dan Bimbingan dan konseling, 10(2), 108-115.
Michail, O., & Spirakis, P. G. (2016). Traveling salesman problems in temporal graphs. Theoretical Computer Science, 634, 1-23.
Sagala, Y. (2016). Pelabelan L(2,1) pada graf sierpiński S(n,k). Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi, 3(2).
Shiu, W. C., Shao, Z., Poon, K. K., & Zhang, D. (2008). A new approach to the L(2,1)-labeling of some products of graphs. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(8), 802-805.
Wang, H. F., & Wen, Y. P. (2002). Time-constrained chinese postman problems. Computers & Mathematics with applications, 44(3-4), 375-387.
DOI: https://doi.org/10.17509/jem.v11i2.66736
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mathematics Program Study, Universitas Pendidikan Indonesia
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.