Potensi Bioplastik dengan Penambahan Agen Antibakteri sebagai Kemasan Aktif Ramah Lingkungan

Chintya Nur Faridah

Abstract


Konsumsi dan produksi plastik yang tinggi menyebabkan penumpukan sampah plastik yang memiliki dampak negatif bagi lingkungan. Hal tersebut disebabkan plastik sulit terdegradasi. Salah satu alternatif solusi permasalahan ini adalah dengan menciptakan kemasan yang mudah terdegradasi, yaitu bioplastik. Kehilangan makanan telah menjadi permasalahan global, salah satu sebabnya adalah pembusukan akibat mikroba di sepanjang rantai pasok yang menyebabkan umur simpan produk berkurang. Kini tuntutan akan kemasan pangan yang memiliki fungsi aktif dibutuhkan demi menjamin keamanan pangan dan meningkatkan umur simpan produk yang dikemas, salah satunya adalah kemasan aktif antibakteri. Metode yang digunakan dalam kajian ini adalah studi literatur. Hasil kajian menunjukkan adanya potensi pengembangan bioplastik antibakteri menggunakan bahan-bahan alami.


Keywords


antibakteri; bahan alami; bioplastik; kemasan aktif; sampah

Full Text:

PDF

References


Agustin, Y. E, & Padmawijaya, K. S. (2017). Effect of glycerol and zinc oxide addition on antibacterial activity of biodegradable bioplastics from chitosan-kepok banana peel starch. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 223, 12-46

Amanda, E. R., Nisyak, K., & Prasetya, Y. A. (2020). Pengembangan bioplastik antibakteri morgonella morganii sebagai kemasan makanan. Jurnal Kimia dan Kemasan, 42(1), 29-36.

Arikan, E. B., & Bilgen, H. D. (2019). Production of bioplastic from potato peel waste and investigation of its biodegradability. International Advanced Researches and Engineering Journal, 3(2), 93-97.

Ayyubi, Shalahudin Nur, Kusmiyati Kusmiyati, Aprilina Purbasari, and Wahyu Zuli Pratiwi. Aplikasi material komposit berbasis kitosan sebagai bahan kemasan makanan. TEKNIK, 42(1), 335-352.

Barker, T. (2010). In Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assesment, Report of the Intergovernmental Panel on Climate Change. USA: Cambridge University Press.

Bilo, F., Pandini, S., Sartore, L., Depero, L. E., Gargiulo, G., Bonassi, A., ... & Bontempi, E. (2018). A sustainable bioplastic obtained from rice straw. Journal of cleaner production, 200, 357-368.

Bondi, M., Messi, P., Halami, P. M., Papadopoulou, C., de Niederhausern, S. (2014). Emerging microbial concerns in food safety and new control measures. Biomed Research International 2014.

Chen, Y. J. (2014). Bioplastics and their role in achieving global sustainability. Journal of Chemical and Pharmaceutical Research, 6(1), 226-231.

Chodijah, S., Husaini, A., & Zaman, M. (2019). Extraction of Pectin from Banana Peels (Musa paradisiaca formatypica) for Biodegradable Plastic Films. JPhCS, 1167(1), 012061.

Chollakup, R., Pongburoos, S., Boonsong, W., Khanoonkon, N., Kongsin, K., Sothornvit, R., Sukyai, P., & Sukatta, U. (2020). Antioxidant and antibacterial activities of cassava starch and whey protein blend films containing rambutan peel extract and cinnamon oil for active packaging. LWT-Food Science and Technology, 130, 1-10.

Chumee, J & Khemmakama, P. (2014). Carboxymethyl cellulose from pineapple peel: useful green bioplastic. Advan Mater Research, 979, 366-369.

Dhani, H. R. (2020). Potensi bioplastik berbasis pati biji nangka dengan selulosa sabut kelapa sebagai material pengisi. Skripsi. Departemen Kimia, Institut Pertanian Bogor, Bogor.

El Kadi, S. (2010). Bioplastic production form inexpensive sources bacterial biosynthesis, cultivation system, production, and biodegradability. USA: VDM Publishing House.

El-Wakil. N.A., Hassan, E. A., Abou-Zeid, R. E. & Dufrense, A. (2015). Development of wheat gluten/nanocellulosa/titanium dioxide nanocomposites for active food packaging. Carbohydrate Polymers, 124, 337-346.

Fortunati, E., Luzi, F., Puglia, D., Terenzi, A., Vercellino, M., Visai, L., ... & Kenny, J. M. (2013). Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: Part II. Carbohydrate polymers, 97(2), 837-848.

Fathanah, U., Lubis, M. R., Rosnelly, C. M., & Moulana, R. (2013). Making and characterizing bioplastic from cassava (manihot utilissima) peel starch with sorbitol as plasticizer. In The 7th International Conf. of Chemical Engineering on Science and Applications. Syiah Kuala University, Bandar Aceh.

Gadhave, R. V., Abhijit, D., Prakash A, M., & Gadekar, P. (2018). Starch based bio-plastics: the future of sustainable packaging. Open Journal of Polymer Chemistry, 8, 21-33.

Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.

Ginting, M. H. S., Tarigan, F. R., & Singgih, A. M. (2015). Effect of gelatinization temperature and chitosan on mechanical properties of bioplastic from avocado seed starch (persea americana mill) with plasticizer glycerol. The International Journal of Engineering and Science, 4, 36-43.

Ginting, M. H. S., Kristiani, M., Amelia, Y., Hasibuan, R. (2016). The effect of chitosan, sorbitol, and heating temperature bioplastoc solution on mechanical properties of bioplastic from durian seed starch (durion zibehinus). Int. Journal of Engineering Res. And Appl, 6, 33-38.

Giyatmi, G., Irianto, H. E., Anggoro, B., Nurhayati, & Fransiska, D. (2020). Use of basil leaf ethanol extract in alginate base edible film. In Virtual Conference on Engineering, Science and Technology (ViCEST). IOP Publishing, 1993, 012001.

Hagemann, R & D’Amico, D. (2009). Bio-plastic composite material, method of making same, and method of using same. (US 2009/0110654 A1).

Handayani, R & Nurzanah, H. (2018). Karakteristik edible film pati talas dengan penambahan antimikroba dari minyak atsiri lengkuas. Jurnal Kompetensi Teknik, 10(1), 1-11.

Hendri, O. Z., Irdoni, & Bahrudin. (2017). Pengaruh Kadar Filler Mikrokristalin Selulosa dan Plasticizer terhadap Sifat Morfologi Bioplastik Berbasis Pati Sagu. Jour. FTEKNIK, 4(2), 1-10.

Hermawan, R., Adel, Y. S., Renol, R., Syahril, M., & Mubin, M. (2022). Kajian Mikroplastik pada Ikan Konsumsi Masyarakat di Teluk Palu, Sulawesi Tengah. Journal of Marine Research, 11(2), 267-276.

Hestina, Gultom, E., & Purwandari, V. (2021). Sintesis Bioplastik dengan Bahan Aktif Ekstrak Rambut Jagung (Zea mays L.). Jurnal TEKENSOS, 3(2), 97-105.

Jambeck. (2015). Plastik Waste Inputs From Land Into The Ocean. Science, 347(6223), 768- 771.

Kongkaoroptham, P., Piroonpan, T., & Pasanphan, W. (2021). Chitosan Nanoparticles Based on Their Derivatives as Antioxidant and Antibacterial Additives for Active Bioplastic Packaging. Carbohydrate Polymers, 257, 1-17.

Lubis, M., Harahap, M. B., Manullang, A., Ginting, M. H. S, & Sartika. (2017). Utilization Starch of Jackfruit Seed as Raw Material for Bioplastics Manufacturing Using Sorbitol as Plasticizer and Chitosan as Filler. JPhCS. 801(1), 12-14.

Lubis, M., Harahap, M. B., Ginting, M. H., Sebayang, A. T., Chandra, T., & Wangi, Y. (2020, December). Mechanical, SEM and FTIR Caharacteristics of Bioplastics from Mango Seed Starch with Nanoparticle Zinc Oxide as Filler and Ethylene Glycol as Plasticizer. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 1003(1), 12-122.

Mandala, W. C. R., Saepudin, E., & Nizardo, N. M. (2020, June). Effect of addition of antibacterial compound from kelor leaves extract (Moringa oleifera Lam) to foodborne pathogen bacteria activity on crosslinked bioplastic poly (vinyl alcohol)/starch. In AIP Conference Proceedings. AIP Publishing. 2242 (1).

Merisiyanto, G., & Mawarani, L. J. (2013). Pengembangan plastik phorobodegradable berbahan dasar umbi ubi jalar. Jurnal Teknik ITS, 2(1), F107-F111.

Nasution, H., & Wulandari, G. (2021). The effect of betel (piper betle) leaf extract as antimicrobial agent on characteristics of bioplastic based on sago starch. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 1122, 1-7.

Petruzzi, L., Corbo, M. R. Sinigaglia, M., Bevilacqua, A. (2017). Microbial Spoilage of Foods: Fundamentals, The Microbiological Quality of Food. Woodhead Publishing. 1-21.

Philp, J. C., Ritchie, Guy, K. (2013). Biobased plastics in a bioeconomy. Trend in Biotechnology, 31(2), 65-67.

Ramadhan, M. O., & Nugraha, J. F. (2021). Potensi pati dari limbah biji buah sebagai bahan bioplastik. EDUFORTECH, 6(1), 9-15.

Rorong, J. A. & Wilar, W. F. (2020). Keracunan makanan oleh mikroba. Techno Science Journal. 2(2). 47-60.

Santoso, A., Ambalinggi, W., & Niawanti, H. (2019). Pengaruh Rasio Pati dan Kitosan Terhadap Sifat Fisik Bioplastik dari Pati Biji Cempedak (Artocarpus champeden). Jurnal Chemurgy. 3(2). 8-11.

Sharma, C., Manepalli, P. H., Thatte, A., Thomas, S., Kalarikkal, N. & Alavi, S. (2017). Biodegradable starch/pvoh/laponite rd-based bionanocomposite films coated with graphene oxide: preparation and perfomance characterization for food packaging applications. Coloid and Polymer Science, 295, 1695-1708.

Sung, S. Y., Sin, L. T., Tee, T. T., Bee, S. T., Rahmat, A. R., Rahman, W. A. W. A., ... & Vikhraman, M. (2013). Antimicrobial agents for food packaging applications. Trends in Food Science & Technology. 33(2). 110-123.

Swamy, J.N. and B. Singh. (2010). Bioplastics and global sustainability. Plastics Research Online. Society of Plastics Engineers, 10.

Ulyarti, U., Lavlinesia, L., Surhaini, S., Siregar, N., Tomara, A., Lisani, L., & Nazarudin, N. (2021). Development of yam-starch-based bioplastics with the addition of chitosan and clove oil. Makara Journal of Science, 25(2), 91-97.

Yuliana, N. D. (2021). Kajian Dampak Mikroplastik di Sungai dan Air Minum terhadap Lingkungan Hidup dan Kesehatan Manusia (Doctoral dissertation, Institut Teknologi Sepuluh Nopember).




DOI: https://doi.org/10.17509/edufortech.v7i1.44977

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

View My Stats>