The potency of Mentega Cassava (Manihot esculenta) Variety Peels Waste as Raw Material for Bioethanol by Enzymatic Hydrolisis

Essa Annisa Syadiah, Fitrah Adelina, S Sudarmin, Fitrianti Handayani, Juniaty Arruan Bulawan

Abstract


Mentega cassava skin waste can be used as an energy source in the form of bioethanol. Ethanol (C2H5OH) is the result of conversion from sugar fermentation using the help of microorganisms. This study aims to determine the levels of bioethanol produced from butter cassava peels obtained from Ibun district, Bandung regency through enzymatic treatment. The research procedure started from pre-treatment of cassava peel waste as a substrate, enzymatic hydrolysis and fermentation. Enzymatic hydrolysis used Trichoderma viride isolates with 3 inoculum concentrations of 10%, 15% and 20%. Meanwhile, the fermentation process uses Saccharomyces cerevisiae isolates. The highest reducing sugar of 21.28 mg/L was produced by hydrolysis treatment for 60 hours and an inoculum concentration of 10%. The highest bioethanol content was 4.9 mg/L with a fermentation time of 96 hours.


Keywords


bioethanol; fermentation; hydrolisis; mentega cassava peels; waste

Full Text:

PDF

References


Adetunji, R. O., Youdeowei, P. K., & Kolawole, O. O. (2015). Production of bioethanol from cassava peel. In Proceedings from International Conference on Renewable energy and power held at Atlanta, Georgia (1).

Arnata, I., & Anggreni, A. D. (2013). Rekayasa bioproses produksi bioetanol dari ubi kayu dengan teknik ko-kultur ragi tape dan Saccharomyces cerevisiae. Agrointek: Jurnal Teknologi Industri Pertanian, 7(1), 21-28.

Badaruddin, Muhammad. (2015). Indonesia Rejoining OPEC: Dynamics of the Oil Importer and Exporter Countries. Journal of ASEAN Studies 3(2), 116-132.

Cao, W., Sun, C., Li, X., Qiu, J., & Liu, R. (2017). Methane production enhancement from products of alkaline hydrogen peroxide pretreated sweet sorghum bagasse. RSC advances, 7(10), 5701-5707.

Chibuzor, O., Uyoh, E. A., & Igile, G. (2016). Bioethanol production from cassava peels using different microbial inoculants. African Journal of Biotechnology, 15(30), 1608-1612.

Ermawati, T. (2015). Analisis Subsidi Energi Dalam Pengembangan Energi Terbarukan. Jurnal Ekonomi dan Pembangunan, 23(1), 53-65.

Erna, Irwan Said, dan Paulus H. Abram. (2016). Bioetanol dari Limbah Kulit Singkong (Manihot esculenta crantz) Melalui Proses Fermentasi. J. Akademika Kim. 5(3): 121-126

IESR (2019). Indonesia Clean Energy Outlook: Tracking Progress and Review of Clean Energy Development in Indonesia. Jakarta: Institute for Essential Services Reform (IESR)

Kurniaty, I., Hasyim, U. H., & Yustiana, D. (2017). Proses delignifikasi menggunakan NAOH dan amonia (NH3) pada tempurung kelapa. Jurnal Integrasi Proses, 6(4), 197-201.

Larasati, I. A., Argo, B. D., & Hawa, L. C. (2019). Proses Delignifikasi Kandungan Lignoselulosa Serbuk Bambu Betung dengan Variasi NaOH dan Tekanan. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 7(3), 235-244.

Lu, H., Liu, S., Shi, Y., & Chen, Q. (2022). Efficient delignification of sugarcane bagasse by Fenton oxidation coupled with ultrasound assisted NaOH for biotransformation from Agaricus sinodeliciosus var. Chemical Engineering Journal, 137719.

Mazaheri, D., Orooji, Y., Mazaheri, M., Moghaddam, M. S., & Karimi-Maleh, H. (2021). Bioethanol production from pomegranate peel by simultaneous saccharification and fermentation process. Biomass Conversion and Biorefinery, 1-9.

Merali, Z., Collins, S. R., Elliston, A., Wilson, D. R., Käsper, A., & Waldron, K. W. (2015). Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnology for biofuels, 8(1), 1-13.

Monir, M. U., Abd Aziz, A., Yousuf, A., & Alam, M. Z. (2020). Hydrogen-rich syngas fermentation for bioethanol production using Sacharomyces cerevisiea. International Journal of Hydrogen Energy, 45(36), 18241-18249.

Nathan, V. K., Esther Rani, M., Rathinasamy, G., Dhiraviam, K. N., & Jayavel, S. (2014). Process optimization and production kinetics for cellulase production by Trichoderma viride VKF3. SpringerPlus, 3(1), 1-12.

Perrone, B., Giacosa, S., Rolle, L., Cocolin, L., & Rantsiou, K. (2013). Investigation of the dominance behavior of Saccharomyces cerevisiae strains during wine fermentation. International journal of food microbiology, 165(2), 156-162.

Smitha, C., Finosh, G. T., Rajesh, R., & Abraham, P. K. (2014). Induction of hydrolytic enzymes of phytopathogenic fungi in response to Trichoderma viride influence biocontrol activity. International Journal of Current Microbiology and Applied Sciences, 3(9), 1207-1217.

Soares, M. L., & Gouveia, E. R. (2013). Influence of the alkaline delignification on the simultaneous saccharification and fermentation (SSF) of sugar cane bagasse. Bioresource technology, 147, 645-648.

Suhery, W. N., Halim, A., & Lucida, H. (2013). Uji sifat fisikokimia mocaf (modified cassava flour) dan pati singkong termodifikasi untuk formulasi tablet. Jurnal Farmasi Indonesia, 6(3).

Syadiah, E. A., Haditjaroko, L., & Syamsu, K. (2018). Bioprocess engineering of bioethanol production based on sweet sorghum bagasse by co-culture technique using Trichodermareesei and Saccharomyces cerevisiae. In IOP Conference Series: Earth and Environmental Science, 209(1), 12-18.

Syadiah, E. A., & Syamsu, K. (2020) Produksi Bioetanol dari Kulit Singkong Mentega melalui Sakarifikasi dan Fermentasi Simultan SSF) Konvensional, menggunakan Trichoderma viride dan Saccharomyces cerevisiae. EDUFORTECH, 6(2), 123-130.

Syamsu, K., Haditjaroko, L., & Syadiah, E. A. (2020). Bio-ethanol production from sweet sorghum bagasse by engineered simultaneous saccharification and fermentation technology using Trichoderma reesei and Saccharomyces cerevisiae. In IOP Conference Series: Earth and Environmental Science, 472(1), 12-25.

Tsafrakidou, P., Bekatorou, A., Koutinas, A. A., Kordulis, C., Banat, I. M., Petsi, T., & Sotiriou, M. (2018). Αcidogenic fermentation of wheat straw after chemical and microbial pretreatment for biofuel applications. Energy Conversion and Management, 160, 509517.

Umagiliyage A L, Choudhary R, Liang Y, Haddock J, Watson D G. (2015). Laboratory scale Optimization of Alkali Pretreatment for Improving Enzymatic Hydrolysis of Sweet Sorghum Bagasse. Industry Crops and Product, 74, 977-986




DOI: https://doi.org/10.17509/edufortech.v7i2.50966

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 

View My Stats>