PERAMALAN BEBAN LISTRIK JANGKA PENDEK TERKLASIFIKASI BERBASIS METODE AUTOREGRESSIVE INTEGRATED MOVING AVERAGE
Abstract
Full Text:
PDFReferences
Alicia Troncoso Lora, Jesus Manuel R.S, Jose C.R, Antonio Gomes E, and Jose Luis M.R, “Time-Series Prediction: Application to the Short-Term Electric Energy Demand”. CAEPIATTIA 2003, LNAI 3040, pp. 577-586, 2004.
Francesco Camstra and Anna Maria Colla, “Short-term Load Forecasting besed on Correlation Dimention Estimation and Neural Nets”. Elsag Bailey-Finmeccanica S.p.A, Via G. Puccini, 216154 Genova (ITALY).
Keem Siah Yap, Izham Zainal A, Chee Peng Lim, and Mohd Suhairi Shah, “Short Term Load Forecasting Using a Hybrid Neural Network”. November 28-29, 2006, Putrajaya, Malaysia.
R ̈st ̈ Y, Mahmud H, Veysel Y, Fehim B, “A Comparison of ANFIS and ARIMA techniques in the forecasting of electric energy consumption of Tokat province in Turkey”. Turkey, volume 2, number 2, july 2011.
Francisco J. Nogales, Javier Contreras, Antonio J. C, Rosario E, “ Forecasting Next-Day Electricity Price by Time Series Models”. IEEE Transsactions On Power System, Vol.17, No. 2, May 2002.
Tarik Rashid, B.Q. Huang, M-T. Kechadi and B. Glessoen, “Auto-regressive Recurrent Neural Network Approach for Electricity Load Forecasting”. IJCI, Vol. 3, No. 1, 2006, ISSN 13042386.
James W. Taylor, “An evaluation of methods for very short-term load forecasting using minuteby-minute British data”. University of Oxford, 2008.
Nguyen-Vu Truong, Liuping wang, Peter K.C. Wong, “Modelling and Short-term forecasting of daily peak power demand in Victoria using two-dimensional wavelet based SDP models”. Electric Power and Energy system 30 (2008) 511-518.
Sadeq Ahmad. “Tesis: Analisis Prediksi Indeks Harga Saham Gabungan Dengan Metode Arima”. Universitas Diponegoro. Semarang, 2008.
Refbacks
- There are currently no refbacks.