Analisis Variasi Parameter Backpropagation Artificial Neural Network dan Principal Component Analysis Terhadap Sistem Pengenalan Wajah

Ikhwannul Kholis, Syah Alam

Abstract


Face recognition can be done by using Backpropagation Artificial Neural Network (ANN) and Principal Component Analysis (PCA). ANN is made to resemble the human neural system. By varying some parameters on backpropagation, backpropagation characteristics is known to minimize errors and epoch and enlarge Recognition Rate. The experimental results show the relationship between the parameters of eigenvalues, alpha, and coefficient of momentum, against the recognition rate obtained.


Full Text:

PDF

References


Jong Min Kim, Myung-A Kang. "A Study of Face Recognition using the PCA and Error-Backpropagation." IEEE, 2010.

Kusumadewi, Sri. "Analisis Jaringan Syaraf Tiruan dengan Metode Backpropagation untuk Mendeteksi Gangguan Psikologi." Media Informatika, 2004: 1-14.

Kusumoputro, Benyamin. Jaringan Neural Buatan, Ed. 1. Jakarta: Universitas Indonesia, 2001.

Marzuki. "Multilayer Neural Network and the Backpropagation Algorithm." Lecture Material. Kuala Lumpur: UTM, n.d.


Refbacks

  • There are currently no refbacks.