Mapping of Mangrove Composition in Ratai Bay, Lampung Province using Pleiades 1 Satellite Imagery

Muhammad Sufwandika Wijaya, Muhammad Kamal, Prima Widayani

Abstract


Mangroves are vegetation with significant value in the coastal areas of Indonesia, protected through recognition as protected areas and national rehabilitation programs. In support of these efforts, information on mangrove composition distribution is crucial for biodiversity inventory in mangrove ecosystems. Remote sensing technology, such as Pleiades 1 satellite imagery, can map mangroves down to the family level. On the other hand, Teluk Ratai in Lampung has a well-established natural mangrove ecosystem within a protected area, but limited information is available regarding the composition of vegetation types within it. Therefore, this research aims to map the mangrove vegetation composition in Teluk Ratai using Pleiades 1 satellite imagery. The mapping method involves image segmentation and unsupervised classification to categorize the study area into vegetation classes for field surveys. The final vegetation composition classes are obtained through reclassification based on a key photo approach constructed from field data. The classification represents dominant lifeforms and species. The mapping results of mangrove composition in Teluk Ratai using Pleiades 1 satellite imagery reveal six mangrove composition classes with a total accuracy rate of 92%. The Forest class, dominated by Rhizophora apiculata species, is the largest, covering an area of 203.19 hectares out of the total mangrove area of 277.15 hectares in Teluk Ratai. Additionally, classes dominated by shrubs lifeforms, primarily composed of Rhizophora apiculata and Avicennia marina species, are frequently found in the mudflat areas at the mouth of the Ratai River.


Keywords


Mangrove; Species Composition; Lifeforms; Pleiades 1 imagery

Full Text:

PDF

References


Ahmed, S., Sarker, S. K., Friess, D. A., Kamruzzaman, M., Jacobs, M., Islam, M. A., Alam, M. A., Suvo, M. J., Sani, M. N. H., Dey, T., Naabeh, C. S. S., & Pretzsch, H. (2022). Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. Science of the Total Environment, 853(July), 158662. https://doi.org/10.1016/j.scitotenv.2022.158662

Almeida, P. M. M. de., Madureira Cruz, C. B., Amaral, F. G., Almeida Furtado, L. F., dos Santos Duarte, G., da Silva, G. F., Silva de Barros, R., Pereira Abrantes Marques, J. V. F., Cupertino Bastos, R. M., dos Santos Rosario, E., Santos, V. F., Alves, A., de Oliveira Chaves, F., & Gomes Soares, M. L. (2020). Mangrove Typology: A Proposal for Mapping based on High Spatial Resolution Orbital Remote Sensing. Journal of Coastal Research, 95(sp1), 1. https://doi.org/10.2112/SI95-001.1

Alongi, D. M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1–13. https://doi.org/10.1016/j.ecss.2007.08.024

Anshah, S. A., Rosli, S. N., Omar, H., Talib, N., Saad, N. M., & Ghazali, M. D. (2021). Assessment of pleiades satellite image for mangrove family classification. IOP Conference Series: Earth and Environmental Science, 620(1). https://doi.org/10.1088/1755-1315/620/1/012009

Arief, A. (2003). Hutan Mangrove: Fungsi & Manfaatnya. Kanisius.

Baishya, S., Banik, S. K., Choudhury, M. D., Das Talukdar, D., & Das Talukdar, A. (2020). Therapeutic potentials of littoral vegetation: An antifungal perspective. In Biotechnological Utilization of Mangrove Resources. INC. https://doi.org/10.1016/B978-0-12-819532-1.00011-1

Congalton, R. G. (2001). Accuracy assessment and validation of remotely sensed and other spatial information. International Journal of Wildland Fire, 10(3–4), 321–328. https://doi.org/10.1071/wf01031

Duke, N. C. (1992). Mangrove floristics and biogeography (Issue June, pp. 63–100). https://doi.org/10.1029/CE041p0063

Duke, N. C., Ball, M. C., & Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7(1), 27–47. https://doi.org/10.2307/2997695

FAO. (2007). The world’s mangroves 1980-2005. FAO Forestry Paper, 153, 89.

Frazer, G., Trofynow, J., & Lertzman, K. (1997). A method for estimating canopy opennes, effective leaf area index, and photosynthetically active photon flux density using hemispherical photography and computerized image analysis techniques.

Giesen, W., Wulffraat, S., Zieren, M., & Scholten, L. (2006). Mangrove Guidebook for Southeast Asia. FAO and Wetlands International.

Heenkenda, M. K., Joyce, K. E., Maier, S. W., & Bartolo, R. (2014). Mangrove species identification: Comparing WorldView-2 with aerial photographs. Remote Sensing, 6(7), 6064–6088. https://doi.org/10.3390/rs6076064

Hidayatullah, Muhamad Faqih, & Kamal, M. (2023). Mangrove forest identification using object- based approach classification Mangrove Forest Identification Using Object-Based Approach Classification. 050011(February).

Hidayatullah, Muhammad Faqih. (2022). Estimasi Stok Karbon Atas Permukaan Spesies Mangrove Menggunakan Geobia dan Indeks Vegetasi Pada Citra Worldview-2 Di Clungup Mangrove Conservation, Kabupaten Malang. http://etd.repository.ugm.ac.id/penelitian/detail/206959

Husson, E., Ecke, F., & Reese, H. (2016). Comparison of manual mapping and automated object-based image analysis of non-submerged aquatic vegetation from very-high-resolution UAS images. Remote Sensing, 8(9), 1–18. https://doi.org/10.3390/rs8090724

Indonesia, P. R. of the R. of. (2020). Presidential Regulation of the Republic of Indonesia No. 20 of 2020 concerning the Restoration Agency of Peatlands and Mangroves.

Irsadi, A., Angggoro, S., & Soeprobowati, T. R. (2019). Environmental Factors Supporting Mangrove Ecosystem in Semarang-Demak Coastal Area. E3S Web of Conferences, 125(201 9), 0–4. https://doi.org/10.1051/e3sconf/201912501021

Juniansah, A., Tama, G. C., Febriani, K. R., Baharain, M. N., Kanekaputra, T., Wulandari, Y. S., & Kamal, M. (2018). Mangrove Leaf Area Index Estimation Using Sentinel 2A Imagery in Teluk Ratai, Pesawaran Lampung. IOP Conference Series: Earth and Environmental Science, 165(1). https://doi.org/10.1088/1755-1315/165/1/012004

Kamal, M., & Phinn, S. (2011). Hyperspectral data for mangrove species mapping: A comparison of pixel-based and object-based approach. Remote Sensing, 3(10), 2222–2242. https://doi.org/10.3390/rs3102222

Kamal, M., Phinn, S., & Johansen, K. (2015). Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. In Remote Sensing (Vol. 7, Issue 4). https://doi.org/10.3390/rs70404753

Kodikara, K. A. S., Jayatissa, L. P., Huxham, M., Dahdouh-Guebas, F., & Koedam, N. (2018). The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Botanica Brasilica, 32(1), 37–46. https://doi.org/10.1590/0102-33062017abb0100

Kumar, T., Mandal, A., Dutta, D., Nagaraja, R., & Dadhwal, V. K. (2019). Discrimination and classification of mangrove forests using EO-1 Hyperion data: a case study of Indian Sundarbans. Geocarto International, 34(4), 415–442. https://doi.org/10.1080/10106049.2017.1408699

Maurya, K., Mahajan, S., & Chaube, N. (2021). Remote sensing techniques: mapping and monitoring of mangrove ecosystem—a review. Complex & Intelligent Systems, 7(6), 2797–2818. https://doi.org/10.1007/s40747-021-00457-z

McCarthy, M. J., Merton, E. J., & Muller-Karger, F. E. (2015). Improved coastal wetland mapping using very-high 2-meter spatial resolution imagery. International Journal of Applied Earth Observation and Geoinformation, 40, 11–18. https://doi.org/10.1016/j.jag.2015.03.011

Nwobi, C., Williams, M., & Mitchard, E. T. (2020). Rapid Mangrove forest loss and Nipa Palm (Nypa fruticans) expansion in the Niger Delta, 2007-2017. Remote Sensing, 12(14), 2007–2017. https://doi.org/10.3390/rs12142344

Perko, R., Raggam, H., & Roth, P. M. (2019). Mapping with Pléiades-end-to-end workflow. Remote Sensing, 11(17), 1–52. https://doi.org/10.3390/rs11172052

Pham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing, 11(3), 1–24. https://doi.org/10.3390/rs11030230

Plumb, G. A. (1991). Assessing vegetation types of Big Bend National Park, Texas for image-based mapping. Vegetatio, 94(2), 115–124. https://doi.org/10.1007/BF00032625

Snook, P. W., Winterberger, K. C., Merritt, N. E., & Czaplewski, R. L. (1987). Comparison between digital and manual interpretation of high altitude aerial photographs. Photogrammetric Engineering & Remote Sensing, 53(5), 531–534.

Spalding, M., Blasco, F., & Field, C. (1997). World Mangrove Atlas. https://archive.org/details/worldmangroveatl97spal

Story, M., & Congalton, R. G. (1986). Remote Sensing Brief Accuracy Assessment: A User’s Perspective. Photogrammetric Engineering and Remote Sensing, 52(3), 397–399. https://www.asprs.org/wp-content/uploads/pers/1986journal/mar/1986_mar_397-399.pdf

The National Centre for Space Studies. (2012). Pléiades Imagery User Guide.

Toutin, T., & Schauer, P. (2006). 3D physical versus empirical models for HR sensor orientation and elevation extraction: Examples with ikonos and quickbird. Revue Francaise de Photogrammetrie et de Teledetection, 184, 115–120.

Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231(May). https://doi.org/10.1016/j.rse.2019.111223

Widodo, P., Sukarsa, Herawati, W., Hidayah, H. A., Chasanah, T., & Proklamasiningsih, E. (2020). Distribution and Characteristics of Nypa Palm (Nypa fruticans Wurmb.) in Southern Part of Cilacap Regency. IOP Conference Series: Earth and Environmental Science, 550(1). https://doi.org/10.1088/1755-1315/550/1/012010

Zharikov, Y., Skilleter, G. A., Loneragan, N. R., Taranto, T., & Cameron, B. E. (2005). Mapping and characterising subtropical estuarine landscapes using aerial photography and GIS for potential application in wildlife conservation and management. Biological Conservation, 125(1), 87–100. https://doi.org/10.1016/j.biocon.2005.03.016




DOI: https://doi.org/10.17509/gea.v23i2.59612

DOI (PDF): https://doi.org/10.17509/gea.v23i2.59612.g24470

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Geografi Gea

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.