Comparison of Global and Local Deterministic Interpolation Methods to Predict Spatial Distribution of Ni, Fe and MgO in Nickel Laterite Deposits

Hendro Purnomo, Shilvyanora Aprilia Rande, R. Andy Erwin Wijaya, Faisol Mukarrom

Abstract


The selection of an interpolation method that complies with the availability of data, to map the grade distribution of mineral commodities, is an important issue in every stage of exploration in the mining industry. A reliable method can produce accurate predictions of the grade distribution of deposits so that it can be used to properly evaluate the economic potential of a mineral deposit. The objective of this research was to compare the performance of four deterministic interpolation methods, including Global Polynomial Interpolation (GPI), Radial Basis Function (RBF), Inverse Distance Weighting (IDW), and Local Polynomial Interpolation (LPI), to map the distribution of Ni, Fe, and MgO. The evaluation of the interpolation results was carried out using the cross-validation technique through the statistical parameters Mean Error (ME), Root Mean Square Error (RMSE), and Mean Relative Error (MRE). The results of the comparison show that the performance of the RBF method is the most accurate as indicated by the lowest RMSE and MRE values, or the ME value that is closest to zero. It can be concluded that the RBF interpolation technique is the best method for predicting the spatial distribution of Ni, Fe, and MgO grades in this study area.


Keywords


Interpolation; deterministic; GPI; RBF; IDW; LPI

Full Text:

PDF

References


Adhikary. P. P, and Dash. Ch. J., 2017, Comparison of deterministic and stochastic methods to predict spatial variation of groud water depth, Appl Water Sci, 7: 339-348.

Aguilar. F.J, Aguera. F, Aguilar. M.A, Carvaja. F., 2005, Effect of terrain morphology, sampling density, and interpolation methods on Grid DEM accuracy, Photogrametric Engineering & Remote Sensing 71 (7), pp 805-816.

Annels. A. E., 1991, Mineral Deposit Evaluation, A practical approach, Chapman & Hall.

Antal. A, Guerreiro. P.M.P, Cheval. S., 2021, Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal, Theoretical Applied Climatology, 145: 1193-1206.

Arkoc. O., 2021, Modeling of spatiotemporal variations of groundwater levels using different interpolation methods with the aid of GIS, case study from Ergene Basin, Turkey, Modeling Earth System and Environment.

Astari, A. J., Mohamed, A. A. A., & Ridwana, R. (2021). The Role of Geographic Information Science in Achieving Sustainable Development Goals (SDGs) During the Covid-19 Pandemic. Jurnal Geografi Gea, 21(2), 112-122.

Berrar. D., 2018., Cross-validation, Reference Module in Life Sciences.

Bhunia. G.S, Shit. P.K, Maiti. R., 2016, Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC), J Saudi Soc Agric Sci.

Brand. N.W, Butt. C.R.M, Elias M., 1998, Nickel lateritic: classification anf features. AGSO J. Aust. Geol. Geophys, 17(4), 81-88.

Butt. C. R. M, and Cluzel. D., 2013, Nickel Laterite Ore Deposits: Weathered Serpentinites, Elements, Vol.9, pp. 123-128.

Chai H, Cheng W, Zhou C, Chen X, Ma X, Zou S., 2011, Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China, Nat Sci 3(12): 999-1010.

Chen. T, Ren. L, Yuan. F, Yang. X, Jiang. S, Tang. T, Liu. Y, Zhao. C, and Zhang. L.,2017, Comparison of spatial interpolation schemes for rainfall data and application in hydrological modeling, Water, 9, 342.

Cheng. M, Wang. Y, Engel. B, Zhang. W, Peng. H, Chen. X, Xia. H., 2017, Performance assessment of spatial interpolation of precipitation for hydrological process simulation in the Three Georges Basin, Water 9, 838.

Cheng. X.F, and Xie. Y., 2009 Spatial distribution of soil organic carbon density in Anhui Province based on GIS, Sientia Geograph. Sin 29 (4) 540-544.

Cooper. H.M, Zhang. C, Selch. D., 2015, Incorporating uncertainty of groundwater modeling in se-level rise assessment, A case study in South Florida climatic change, 129 (1-2), pp 281-294.

Daya. A. A., 2012, Reserve estimation of central part of Choghart north anomaly iron ore deposit through ordinary kriging method, International Journal of Mining and Technology 22, 573-577.

Elias M., 2002, Nickel laterite deposits-Geological overview, resources and exploration, Cent. Ore depos. Res. Univ Tasmania 205-220.

Fu. W, Zhang. Y, Pang. C, Zeng. X, Huang. X, Yang. M, Shao. Y, Lin. H., 2018, Garnierite mineralization from a serpentinite-derived lateritic regolith, Sulawesi Island, Indonesia; mineralogy, geochemistry ang link to hydrologic flow regime, Journal of Geochemical exploration 188, p. 240-256.

Fu. W, Yang. J. W, Yang. M. L, Pang. B. C, Liu. X. J, Niu. H. J, Huang. X. R., 2014, Mineralogical and geochemical characteristics of a serpentinite-derived lateritic profile from East Sulawesi, Indonesia: implications for the laterization process and Ni supergene enrichment in the tropical rainforest. Journal Asian Earth Sci. 93, p74-88.

Farrokhpay S, Cathelineau M, Blancher S B, Laugier O, Filippov L., 2019, Characterization of Weda Bay nickel laterite ore from Indonesia, J Geochem Explor 196: 270-281.

Garvin. M M, Simon. M.J., 2014, A detail assessment of global nickel resource trends and endowments, Soc. Econ, Geol. Inc. Ecom. Geol, 109, 1813-1814.

Gilewski. P., 2021, Impact of the grid resolution and deterministic interpolation of precipitation on rainfall-runoff modeling in a sparsely gauged mountainous catchment, Water, 13, 230, p. 1-21.

Golightly J., 1981, Nickeliferous laterite deposits, Econ. Geol, 75, 710-735.

Guo. Z, Zhu. D, Pan. J, Zhang. F., 2017, Mineralogical characteristics and preliminary beneficiation of nickel slag from reduction roasting-ammonia leaching, Minerals 7:98-114.

Hall. R, E. J. Wilson., 2000, Neogene Suture in Eastern Indonesia, Journal Asian Earth Sci, 18, p. 781-808.

Handoko, M., & Sutrisno, A. J. (2021). Spatial and Temporal Analysis of Dissolved Oxygen (DO) and Biological Oxygen Demand (BOD) Concentration in Rawa Pening Lake, Semarang Regency. Jurnal Geografi Gea, 21(1), 58-71.

Isdianti, A. R., Ibrahim, E., & Setiawan, B. (2022). Soil erodibility in post coal mining land reclamation area in backfilling MTBU Tambang Air Laya (TAL) PT Bukit Asam Tbk., Tanjung Enim Mining Unit (UPTE) Muara Enim, South Sumatera. Jurnal Geografi Gea, 22(1), 47-54.

Jiang. B, Xu. W, Zhang. D, Nie. F, Sun. Q., 2022, Contrasting multiple deterministic interpolation responses to different spatial scale in prediction soil organic carbon: A case study in Mollisols regions, Ecological Indicators 134 (2022) 108472, p 1-11.

Johston. K, VerHoef. J. M, Krivoruchko. K, Lucas. N., 2001, Using ArcGIS geostatistical analyst, Redlands, CA, USA: ArcGIS Manual by ESRI.

Konig. U., 2021, Nickel laterites-mineralogical monitoring for grade definition and process optimization, minerals, 11, 1178.

Li. J, and Heap. A.D.,2008, A review of spatial interpolation methods for environmental scientists, Canberra. Geocience Australia Record 208/23, 137 pp.

Li X L, Xie Y L, Guo Q J, Li L H., 2010, Adaptive ore grade estimation method for the mineral deposit evaluation, Mathematical and Computer Modelling 52. 1947-1956.

Losser T, Li L, Piltner R A., 2014, Spatio temporal interpolation method using radial basis functions for geospatio temporal big data, In IEEE fifth international conference on computing for geospatial research and application, COM. GEO pp 17-24.

Luo. W, Taylor. M.C, Parker. S.R., 2008, A comparison of spatial interpolation methods to estimate continues wind speed surface using irregular distributed data from England and Wales, Int Journal Climatology 28 (7): 947-959.

Nkrumah P N, Baker A J. M, Chaney R L, Erskine P D, Echevarria G, Morel J l, Ent A V D., 2016, Current status and challenges in developing nickel Phyto mining: an agronomic perspective, Plant Soil 406: 55-69.

Qu H, Liu H, Tan K, Zhang Q., 2021, Geological feature modeling and reserve estimation of uranium deposits based on multiple interpolation methods, Processes, 10, 67, pp 1-16.

Santos T.C and Yamamoto J.K., 2019, Ore resource estimation based on radial based functions - Case study on Uniao Luiz and Morro do Carrapato gold deposits (Alta Floresta gold province), REM, int. Eng. J., Ouro Preto, 72(3), 493-499.

Simandjuntak T.O, Surono, Supardjono J.B., 1997, Geology map of the Poso quadrangle, Sulawesi, Geological Research and Development Centre, Bandung, Scale 1: 250,000.

Tanjung. M, Syahreza. S, Rusidi. M., 2020, Comparison of interpolation methods based on Geografic Information system (GIS) in the spatial distribution of seawater intrusion, Jurnal Natural vol.20, (2).

Wang. S, Huang. G.H, Lin. Q.G, Li. Z, Zhang. H, and Fan. Y.R, 2014, Comparison of interpolation methods for estimating spatial distribution of precipitation in Ontario, Canada, Int. J, Climatol. 34: 3745-3751.

Webster R, and Oliver M.A., 2001, Geostatistics for environmental scientists, John Wiley and Sons, Brisbane, Australia.

Yamamoto J.K., 2002, Ore reserve estimation using radial basis function, Rev. do Instituto Geologico, v.23, n.1, p.25-38.

Yan N, Zhao X L, Zhao S G, Zheng H W., 2015, Research progress on sample preparation methods and analytical techniques for nickel laterite, Rock Miner Anal 34: 1-11.

Yasrebi. J, Saffari. M, Fathi. H, Karimian. N, Moazallahi. M, Gazni. R., 2009, Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters, Research Journal of Biological Sciences 4 (1): 93-102.

Yong X, Xiaomin G, Shiyang Y, Jingli S, Yali C, Qiulan Z, Yong N., 2016, Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of ground water level in piedmont plains, northeast China, Springer Plus pp 1-15.

Zhang J.D, Wang C, Yu S.Q, Chen S.D, Guo S.M, Ding M.S, Tan H.Z., 2002, Exploration specifications on in-situ leaching sandstone type uranium deposits; standard No. EJ/T1157-2002, National defense science, Technology and Industry commission, Beijing, China.

Zhang Y, Qie J, Wang X F, Cui K, Fu T, Wang J, Qi Y., 2019, Mineralogical characteristics of the nickel laterite, southeast ophiolite belt, Sulawesi Island, Indonesia, Mining, Metallurgy & exploration.

Zhou S W, Wei Y G, Li B, Wang H, Ma B Z, Wang C Y, Lou X., 2017, Mineralogical Characterization and design of a treatment process for Yunan nickel laterite ore, China Int J Miner Process 159: 51-59.




DOI: https://doi.org/10.17509/gea.v24i1.61886

DOI (PDF): https://doi.org/10.17509/gea.v24i1.61886.g27104

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Geografi Gea

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.