Assessing Recent Land Subsidence in Bandar Lampung City, Indonesia through Time Series InSAR from 2015 to 2023
Abstract
Bandar Lampung is a densely populated city with a rapidly increasing growth rate each year, resulting in a significant demand for water resources that contributes to subsidence. This study utilizes Sentinel-1 data, observed from 2015 to 2023, employing the Small Baseline Subset (SBAS) method. The Line of Sight (LOS) data were corrected for atmospheric effects using the Generic Atmospheric Correction Online Service (GACOS). During the observation period, Bandar Lampung experienced an average subsidence rate ranging from approximately -2 mm/year to -6.9 mm/year. The InSAR analysis indicated that the most severe subsidence was predominantly concentrated in the eastern part of Bandar Lampung, specifically affecting subdistricts such as Sukabumi, Sukarame, Tanjung Senang, Kedamaian, and Wayhalim. This subsidence is primarily attributed to industrial activities and extensive groundwater extraction, which have contributed to the gradual sinking of the ground surface in these regions. The continuous monitoring of subsidence is crucial for mitigating potential risks, including infrastructure damage and increased flood vulnerability.
Keywords
Full Text:
PDFReferences
Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753–1771. https://doi.org/10.1007/s11069-011-9866-9
Alif, S. M., Fattah, E. I., Kholil, M., & Anggara, O. (2021). Source of the 2019 Mw6. 9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics, 12(4), 308-314.
Alif, S. M., Anggara, O., Ristiana, V., & Engineering, G. (2023). Jurnal Geografi Gea Coherence Analysis of Sentinel-1A Images in Various Land. 23(2), 135–143.
Alif, S. M., Anggara, O., Perdana, S.P., Hasannah, U., Azizah, F, N. (2024). Analysis Of Pre-sumed Land Subsidence in The Cities of Lampung Province Using InSAR And GNSS Data. Journal of Geoscience, Engineering, Environment, and Technology, 9(3), 100-108.
Anggara, O., Rahadianto, M. A. E., Alif, S. M., & Isnaini, E. L. (2024). Analisis Deformasi di Lampung dan Selat Sunda berdasarkan Data GNSS tahun 2018 hingga 2021. Jurnal Fisika Unand, 13(5), 637-643.
Anggara, O., Welly, T. K., Fauzi, A. I., Alif, S. M., Perdana, R. S., Oktarina, S. W., Nuha, M. U., & Rosadi, U. (2023). Monitoring ground deformation of Sinabung volcano eruption 2018-2019 using DInSAR technique and GPS data. AIP Conference Proceedings, 2654(February). https://doi.org/10.1063/5.0114428
Badan Pusat Stastistik. (2023). Kota Bandar Lampung Dalam Angka.
Biggs, J., Wright, T., Lu, Z., & Parsons, B. (2007). Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophysical Journal International, 170(3), 1165–1179. https://doi.org/10.1111/j.1365-246X.2007.03415.x
Cigna, F., & Tapete, D. (2021). Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment, 253, 112161. https://doi.org/10.1016/j.rse.2020.112161
Fuhrmann, T., & Garthwaite, M. C. (2019). Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030241
Ghorbani, Z., Khosravi, A., Maghsoudi, Y., Fazel Mojtahedi, F., Javadnia, E., & Nazari, A. (2022). Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran. Scientific Reports, 12, 13998. https://doi.org/10.1038/s41598-022-17438-y
Gumilar, I., Abidin, H. Z., Hutasoit, L. M., Hakim, D. M., Sidiq, T. P., & Andreas, H. (2015). Land Subsidence in Bandung Basin and its Possible Caused Factors. Procedia Earth and Planetary Science, 12(May), 47–62. https://doi.org/10.1016/j.proeps.2015.03.026
Hayati, N., Widodo, A., Kurniawan, A., Sanjiwani, I. D. M. A., Darminto, M. R., Yudha, I. S., & Sumantyo, J. T. S. (2022). Small baselines techniques of time series InSAR to monitor and predict land subsidence causing flood vulnerability in Sidoarjo, Indonesia. Geomatics, Natural Hazards and Risk, 13(1), 2124–2150. https://doi.org/10.1080/19475705.2022.2109518
Lo, W.-C., Purnomo, S., Dewanto, B. G., Sarah, D., & Sumiyanto. (2022). Integration of Numerical Models and InSAR Techniques to Assess Land Subsidence Due to Excessive Groundwater Abstraction in the Coastal and Lowland Regions of Semarang City. Water, 14, 201. https://doi.org/10.3390/w14020201
Luo, Q., Li, J., & Zhang, Y. (2022). Monitoring Subsidence over the Planned Jakarta–Bandung (Indonesia) High-Speed Railway Using Sentinel-1 Multi-Temporal InSAR Data. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174138
Morishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020). LiCSBAS: An open-source insar time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor. Remote Sensing, 12(3), 5–8. https://doi.org/10.3390/rs12030424
Natadikara, R., Fauzi, A. I., Anggara, O., Perdana, R. S., Alif, S. M., Julzarika, A., Nurtyawan, R., & Rohman, A. (2023). Monitoring Deformation of Anak Krakatoa Volcano Using Differential Interferometry Synthetic Aperture Radar (DInSAR) Method. AIP Conference Proceedings, 2941(1). https://doi.org/10.1063/5.0181540
Orhan, O. (2021). Monitoring of land subsidence due to excessive groundwater extraction using small baseline subset technique in Konya, Turkey. Environmental Monitoring and Assessment, 193(4), 10661. https://doi.org/10.1007/s10661-021-08962-x
Sun, H., Peng, H., Zeng, M., Wang, S., Pan, Y., Pi, P., Xue, Z., Zhao, X., Zhang, A., & Liu, F. (2023). Land Subsidence in a Coastal City Based on SBAS-InSAR Monitoring: A Case Study of Zhuhai, China. Remote Sensing, 15, 2424. https://doi.org/10.3390/rs15092424
Tay, C., Lindsey, E. O., Chin, S. T., Mccaughey, J. W., Bekaert, D., Nguyen, M., Hua, H., Manipon, G., Karim, M., Horton, B. P., Li, T., & Hill, E. M. (2022). Sea-level rise from land subsidence in major coastal cities. 5(December), 41893.
Yang, C., Wei, Y., Xu, Q., Liu, R., & Liu, Y. (2021). Large-area ground deformation investigation over Taiyuan Basin, China 2007–2011 revealed by ALOS PALSAR imagery. Arabian Journal of Geosciences, 14(19). https://doi.org/10.1007/s12517-021-08325-3
Yu, C., Li, Z., Penna, N. T., & Crippa, P. (2018). Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. Journal of Geophysical Research: Solid Earth, 123(10), 9202–9222. https://doi.org/10.1029/2017JB015305
Yusup, M., Tarigan, P. I. S., Noviansah, K., Ridwana, R., & Aliyan, S. A. (2023). Identifikasi Genangan Banjir Menggunakan Sentinel-1 dan Korelasinya dengan Kerawanan Banjir di Kabupaten Barito Selatan. Geo-Image Journal, 12(1), 62-70.
Zaenudin, A., Darmawan, I. G. B., Armijon, Minardi, S., & Haerudin, N. (2018). Land subsidence analysis in Bandar Lampung City based on InSAR. Journal of Physics: Conference Series, 1080(1). https://doi.org/10.1088/1742-6596/1080/1/012043
DOI: https://doi.org/10.17509/gea.v24i2.71315
DOI (PDF): https://doi.org/10.17509/gea.v24i2.71315.g29168
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Geografi Gea
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.