Pengujian Correctness Data Kartu Pembayaran pada Aplikasi E-commerce Menggunakan FitNesse
Abstract
Keywords
Full Text:
PDFReferences
Shankar, V., Venkatesh, A., Hofacker, C., & Naik, P. (2010). Mobile marketing in the retailing environment: current insights and future research avenues. Journal of interactive marketing, 24(2), 111-120.
Ryman-Tubb, N. F., Krause, P., & Garn, W. (2018). How Artificial Intelligence and machine learning research impacts payment card fraud detection: A survey and industry benchmark. Engineering Applications of Artificial Intelligence, 76, 130-157.
Sakharova, I. (2012, June). Payment card fraud: Challenges and solutions. In 2012 IEEE international conference on intelligence and security informatics (pp. 227-234). IEEE.
Galin, D. (2004). Software quality assurance: from theory to implementation. Pearson Education India.
Tsai, W. T., Na, Y., Paul, R., Lu, F., & Saimi, A. (n.d.). Adaptive scenario-based object-oriented test frameworks for testing embedded systems. Proceedings 26th Annual International Computer Software and Applications.
Pressman, R. S. (2005). Software engineering: a practitioner's approach. Palgrave macmillan.
Raj, S. B. E., & Portia, A. A. (2011, March). Analysis on credit card fraud detection methods. In 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET) (pp. 152-156). IEEE.
ISO/IEC 7812-1:2017, https://www.iso.org/standard/70484.html.
FitNesse Web Site, http://www.FitNesse.org.
DOI: https://doi.org/10.17509/jatikom.v7i1.31322
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Aplikasi dan Teori Ilmu Komputer
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.