Software Bug Prioritization in Beta Testing Using Machine Learning Techniques
Abstract
Testing in Software Development Life Cycle is one of the most crucial activities. Bug prioritization has been a manual process for long. Our paper provides a methodology for ease of bug prioritization in beta testing phase. In the methodology, data from various bug reports is supplied into a model and, through machine learning, the model outputs fairly accurate bug priority based on historical data.
Full Text:
PDFReferences
Hambling, B., & Van Goethem, P. (2013). User acceptance testing: a step-by-step guide. BCS Learning & Development.
Andrews, D. F. (1974). A robust method for multiple linear regression. Technometrics, 16(4), 523-531.
Alpaydin, E. (2020). Introduction to machine learning. MIT press.
Kutlubay, O., & Bener, A. (2005). A machine learning based model for software defect prediction. Working paper, Boaziçi University, Computer Engineering Department.
Yang, B., & Balanis, C. A. (2006). Least square method to optimize the coefficients of complex finite-difference space stencils. IEEE Antennas and Wireless Propagation Letters, 5, 450-453.
Singh, Y., Bhatia, P. K., & Sangwan, O. (2007). A review of studies on machine learning techniques. International Journal of Computer Science and Security, 1(1), 70-84.
Frost, J. (2014). Regression Analysis: How to Interpret S, the Standard Error of the Regression. The Minitab Blog. http://blog.minitab.com/blog/adventures-in-statistics/regression-analysis-how-to-interpret-s-the-standard-error-of-the-regression
Nazir, S., Shahzad, S., & Riza, L. S. (2017). Birthmark-based software classification using rough sets. Arabian Journal for Science and Engineering, 42(2), 859-871.
Riza, L. S., Janusz, A., Bergmeir, C., Cornelis, C., Herrera, F., Ślezak, D., & Benítez, J. M. (2014). Implementing algorithms of rough set theory and fuzzy rough set theory in the R package “RoughSets”. Information Sciences, 287, 68-89.
Riza, L. S., Nasrulloh, I. F., Junaeti, E., Zain, R., & Nandiyanto, A. B. D. (2016). gradDescentR: An R package implementing gradient descent and its variants for regression tasks. In 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE) (pp. 125-129). IEEE.
Mulyani, Y., Rahman, E. F., & Riza, L. S. (2016). A new approach on prediction of fever disease by using a combination of Dempster Shafer and Naïve bayes. In 2016 2nd International Conference on Science in Information Technology (ICSITech) (pp. 367-371). IEEE.
Riza, L. S., Pratama, F. D., Piantari, E., & Fashi, M. (2020). Genomic repeats detection using Boyer-Moore algorithm on Apache Spark Streaming. Telkomnika, 18(2), 783-791.
Riza, L. S., Rachmat, A. B., Munir, T. H., & Nazir, S. (2019). Genomic Repeat Detection Using the Knuth-Morris-Pratt Algorithm on R High-Performance-Computing Package. Int. J. Advance Soft Compu. Appl, 11(1), 94-111.
Riza, L. S., Dhiba, T. F., Setiawan, W., Hidayat, T., & Fahsi, M. (2019). Parallel random projection using R high performance computing for planted motif search. Telkomnika, 17(3), 1352-1359.
DOI: https://doi.org/10.17509/jcs.v1i1.25355
Refbacks
- There are currently no refbacks.