Design and Implementation of REST API for Predicting the Recitation of the Qur'an using Machine Learning
Abstract
The Qur'an is the Muslim holy book, consisting of 30 juz and 114 surahs of varying length and number of verses. Reading the Qur'an involves special techniques to understand and read with similarity or consistency to the verse being read. In the digital era, technology enables the development of applications that support the learning and analysis of Qur'anic recitation. This research aims to design and implement a REST API to predict Qur'an recitation using a machine learning (ML) model. This API accepts voice recordings from users and provides output in the form of an assessment of the similarity of their recitation to the desired verse. Using FastAPI and pre-trained models such as Wav2Vec2, the system can translate audio into text with fairly good accuracy. Experimental results show a word error rate (WER) of 30%, which indicates the need for further improvement but is sufficient in the experimental context. The technology is useful as a self-learning tool for the Qur'an, but it does not replace the role of the teacher. Future research should focus on improving model accuracy and integrating more user-friendly features.
Full Text:
PDFReferences
Ahmad, I., Suwarni, E., Borman, R. I., Asmawati, Rossi, F., & Jusman, Y. (2021). Implementation of RESTful API Web Services Architecture in Takeaway Application Development. 2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System, ICE3IS 2021, 132–137. https://doi.org/10.1109/ICE3IS54102.2021.9649679
Fathurohman, A. (2021). MACHINE LEARNING UNTUK PENDIDIKAN: MENGAPA DAN BAGAIMANA. Jurnal Informatika Dan Tekonologi Komputer (JITEK), 1(3), 57–62. https://doi.org/10.55606/JITEK.V1I3.306
Hasan Abdulqader, A., AbdulRahman Al-Haddad, S., Abdo, S., Abdulghani, A., & Natarajan, S. (2022). Hybrid Feature Extraction MFCC and Feature Selection CNN for Speaker Identification Using CNN: A Comparative Study. 2022 2nd International Conference on Emerging Smart Technologies and Applications (ESmarTA), 1–6. https://doi.org/10.1109/eSmarTA56775.2022.9935422
Helmke, H., Shetty, S., Kleinert, M., Ohneiser, O., Prasad, A., Motlice, P., Cerna, A., & Windisch, C. (2021). How to Measure Speech Recognition Performance in the Air Traffic Control Domain? The Word Error Rate is only half of the truth.
Kurniawan, I., & Rozi, F. (2020). REST API Menggunakan NodeJS pada Aplikasi Transaksi Jasa Elektronik Berbasis Android (Vol. 1, Issue 4). http://jurnal-itsi.org
Meghanani, A., & Hain, T. (2024). SCORE: Self-supervised Correspondence Fine-tuning for Improved Content Representations. https://arxiv.org/abs/2403.06260v1
Rumopa, V. W. (2015). KONTROLPENERANGAN RUANGAN MENGGUNAKAN SENSOR SUARA (SPEECH RECOGNITION)BERBASIS ANDROID.
Syaifullah, A., Rahmah, F. M., Salamah, F., & Srisantyorini, T. (2021). PENERAPAN ILMU TAJWID DALAM PEMBELAJARAN AL-QURAN UNTUK MENGEMBANGKAN BACAAN AL-QURAN. Prosiding Seminar Nasional Pengabdian Masyarakat LPPM UMJ, 1(1). https://jurnal.umj.ac.id/index.php/semnaskat/article/view/10844
Xin, Y., Peng, X., & Lu, Y. (2023). Masked Audio Modeling with CLAP and Multi-Objective Learning. 2763–2767. https://doi.org/10.21437/Interspeech.2023-2488
Zayat, A., A. Hasabelnaby, M., Obeed, M., & Chaaban, A. (2023). Transformer Masked Autoencoders for Next-Generation Wireless Communications: Architecture and Opportunities. IEEE Communications Magazine, PP, 1–8. https://doi.org/10.1109/MCOM.002.2300257
DOI: https://doi.org/10.17509/seict.v5i1.70600
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Journal of Software Engineering, Information and Communication Technology (SEICT)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Software Engineering, Information and Communicaton Technology (SEICT),
(e-ISSN:2774-1699 | p-ISSN:2744-1656) published by Program Studi Rekayasa Perangkat Lunak, Kampus UPI di Cibiru.
Indexed by.